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NOMENCLATURE 

area of contact of a single contact spot; 
radius of a single area of contact; 
fraction of actual contact; 
abbreviations; 
ak(l +vb/&; 

~jy-gyg~~ 

firce due to a single contact spot; 
compliance; 
thermal conductivity; 
2% ~a/wl+ &) ; 

number of asperities per unit area A,; 
total contact force per unit area A,; 
pressure; 
total heat flux per unit area A, ; 
heat flux through a single contact area Al ; 
radii of curvature of the contacting asperities 
when unheated; 
Ri RaI(Ri + Rz) ; 
variable radii; 
temperatures; 
temperature difference; 
separation of the mean planes; 
axial coordinates. 

Greek symbols 

ak? coefficient of thermal expansion; 
6, 
A 

B’l(2 $I*) ; 
constriction resistance; 

v, Poisson’s ratios ; 
e, integration variable; 
c, RMS roughness of the surface; 
% thermal contact conductance; 
IL* contact resistance factor. 

Superscripts 
* denotes normalization with respect to c. 

Subscripts 

4 

:, 

interface or mean value; 
single contact spot; 
k = 1,2 solids 1,2. 

INTRODUCTION 

DUE TO the inevitable roughness of all surfaces in nature 
the heat flow through the interface between two apparently 
conforming solids is less than that which would be obtained 
in the presence of perfectly smooth bodies. The actual 
contact is restricted to a few randomly distributed small 
areas within the apparent contact area. The distortion of the 
heat flow causes a change in thermal contact resistance or 
constriction resistance, which depends on the direction of 
heat flow. 

In a paper [1] Barber gives a deterministic mathematical 
treatment of the effect of thermal distortion on the thermal 
contact resistance between two semi-infinite solids of 
different materials. The present work presents an attempt to 
clear up the influence of the thermal distortion due to heat 
flow in the case of rough nominally flat surfaces in perfect 
thermal contact throughout the final circular contact areas 
Ai of radius ai of the asperities in a vacuum under con- 
ditions of negligible radiation. Both the asperities and the 
substrate are assumed to behave elastically. For the sake of 
simplicity and to have a first impression of the thermal 
effect an exponential probability distribution of asperity 
heights is assumed. 

ANALYSIS 

The undistorted surfaces of the solids are spheres, whereas 
the distorted surfaces are approximated by paraboloids 

(k = 1,2), (1) 

where & are the radii of curvature, Tk the “temperatures at 
infinity” of the solids, KO = 2Ki Kl/(Kl + K2) with Kk the 
conductivities and C, thermoelastic constants [l] (see 
Table 1). 

Table 1. Thermoelastic constants of some materials (cgs, cal, “C-System, vk = 0.3) 

Substance Density Spec. heat Diff. coeff. Lin. exp. Conduct. C = (l +vk) 

P c lc 
coeff. CO& 

axlO K 
L 

CxlO” 

Copper 8.94 0.0914 1.14 16.2 @93 2264 
Silver 10.49 0.0556 1.71 197 1.00 2560 
Ahuninium 2.70 0.2060 0.86 23.8 0.48 64.50 
Bronze 8.50 0.09 0.33 18.0 0.25 9360 
steel 7,85 0.118 0.12 11.1 0.11 131.18 
Glass (8int) 240 0.20 00058 5.0 0.0028 2321.42 
Concrete 2.30 0.23 00042 0.0022 
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FIG. 1. Thermal contact geometry (---, nominal surfaces; 
-, Hertzian deformed surfaces; ---, thermal distorted 
nominalsurfaces; ---, thermal distorted surfaces in contact). 

The necessary pressure distribution p(r) to make the 
surfaces (if conform throughout the contact circle Ai is 
calculated by extending Hertz’s analysis to the anisothermal 
case : 

Noting that 

p(r) = 3&,/(2na:) 

and considering (I), a comparison of the r.h.s. in (2) leads 
to the formulae 

E = 4.E’a:/(3R)+8(Cz -C,)(T, - T&&(1 -In 2)E’af/(3a) 

hi = al/R +2(C, - C&T, - T,)&(l -In 2)a&r, 
(3) 

where hi is the compliance, Fi the total force, 
R = RI R2/(R1 + R,), vt the Poisson’s ratios, E& the Young’s 
moduli, 

1/E’ = 1 (1 - v:)/Ek. 
Ir= 1,2 

This can be interpreted as follows: equation (3) gives the 
load Fi and the compliance hi required to cause the solids 1,2 
to conform over a circular area of radius ai when their 
extremities are maintained at temperatures Ti, T2, respec- 
tively (Fig. 1). 

The second equation in (3) permits the determination of 
the contact radius for a given compliance: 

ai = -B/2 + ,&R/2)’ + hi R] (4) 

B=~R(C~-C,)(T,-~)%(l-lnZ) (5) 

and the positive square root has to be chosen to ensure a 
positive value of ai. Tables 2 and 3 show the relations 
between Fi, ai and hi for some specified values of B and 
demonstrate the dependence of the change of the contact area 
on the direction of heat flow. The cases B = 0 (iso~ermal 
or similar materials) reduce to the Hertzian theory. 

In the following, the above solution for a single contact 
spot represents the basis of the conduct of rough bodies 
with heat flow, specifically in the contact of a rough 
nominally aat surface and a smooth plane. 

The thermal contact conductance tp (A = cp-r is the 
constriction resistance) is defined as [2] : 

Table 2. Load F, (kP) vs a = q/R at given temperature 
differences (“C) 

c(,ai AT= 7’,-T, 

R -500 -100 0 100 500 

1.00 459.95 460.71 460.91 461.10 461.87 
0.75 194.90 194.34 194.45 i94.55 194.98 
0.50 5737 5756 57.61 5766 57.85 
0.40 29.34 29.47 29.50 29.53 29.65 
0.30 1236 12.43 12.45 12.46 12.53 
0.25 7.14 7.19 7.20 7.21 7.26 
0.20 3.65 3.68 3-687 3.695 3725 
0.15 1534 1551 I.555 1.560 1.577 
0.10 0.45 1 0.459 0.461 0.463 0.47 1 
0.05 0.055 0.057 0.0575 0.058 oG60 

Table 3. Compliance h/R vs a = a/R at given temperature 
differences (“C) 

ai AT= T,-T2 
a=- 

R -500 -100 0 100 500 

1.00 o-9979 0.9995 1GocG lWo4 1 WI20 
0.75 05609 0,562 I 0.5625 05628 O-5640 
0.50 0.2489 0.2497 0.2500 O-2502 0.2510 
0.25 0*0619 0.0623 0.0625 0.0626 oWJ30 
0.20 0.0395 0.0399 00400 00400 o@Kl4 
0.15 0.0221 0.0224 0.0225 0.0225 0.0228 
0.05 0.0023 OGO24 0.0025 0@025 0*0026 

where Q is the total heat flux per unit apparent area, 
Qi the heat flux through a single contact spot. Let 
Qi = 2K&(Ti - T,)/Y, where Y = (1 -dA)3’2 and A is the 
fraction of actual area of contact, then 

The further development strongly depends on the kind of 
the summit height probability distribution. The special 
choice of an exponential distribution permits an analytical 
solution of the problem. This probability ~stribution is a 
fairly good appro~mati~n to real surfaces at low loads since 
it covers the higher asperities, and gives a first information 
on the magnitude of the thermal distortion effect. 

The fraction of actual area in contact A is given by [3]: 

A = N~~‘R*exp(-u*)[l-~~~exp(~‘)e~c~~)] (8) 

where 6 = B*/(2,,/R*), u* = u/o denotes the dimensionless 
separation of the mean planes with respect to the RMS 
roughness u of the surface, N is the number of asperities in 
the area A,, B* = Bier and R* = Ri5. 

The sum of the contact radii is given by 

Cai = NejcateWidC = J”R NuTe-u*exp(62)erfc(6) 

and the load per unit area by [3] 

N4E’a= m p=- 
j 3R* “t 

(aT3+B*a:Z)e-Fd< 

N4E’e2 
= - e-“‘exp(&2)H@3*) 

3 

where a: = ai/o and 

H(B*) = Jf* [6exp(-62)+Jn(~-_2)erfc(ii)J. 

(9) 

(IO) 

(II) 



Upon eliminating u* in the equations (9) and (10) one 
gets 

3 &CR*) P erfc(ii) 
b=~,N(Bi)’ 
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Table 4. Total load P (kP) vs constriction resistance I 
(scm2 ‘C/Cal) at given total heat flux Q (cal/scm2) 

(equation 14) 

and, conside~n8 the relation P/A, from (7) and (12) a 
transcendental relation between constriction resistance 2, 
total force P and total heat flux Q results by substituting 
Ti - T2 = I. Q in the expression for J3: 

(1 -J[.W QW)"" 
P 

= rgn 3 J&R*) erfc@) 
4Eo H(BLf’ (13) 

In the case of low loads, where the thermal interaction 
of the randomly distributed single contact spots is very 
weak-the adiabatic cylinder [2] becomes large-_9 tends 
to unity; then from (13) one gets an approximate relation 
between P, Q and I of the form 

a 4E II@*) 
P=%A_merfco 

(14) 

where B* now is a function of the product d&Q given in 
(5). Table 4 shows the relation between P, Q and /I for heat 
flow between stainless steel and copper specimens in contact. 

Exhale. The thermal distortion effect due to heat flow 
between the interface of a stainless steel specimen, referred 
to as the smooth plane (index l), and a copper specimen, 
referred to as the rough plane (index 2) in contact is 
analyzed. 

Data: 
Young’s modulus (St) El = 2.08 x 10’ kP/cm2 
Young’s modulus (Cu) Ez = 1.25 x lo6 kP/cm* 
Poisson’s ratio v, = v2 = 0.3 
Conductivity & = 0.1967 cal/(scm3 “C) 
Cz - Ci = - 10854 x 10-6scm3/cal 
Asperity radius R = R2 =O.O2cm 
Roughness ~=5xlO-~cm 
Asperity density N = 5 x 104/cm2 
Tem~ratures diRerences T,-T~=(-500,-100,0, 

loo. 500) “C 

1 Q 
-500 -100 0 100 500 

1 219.86 219.48 218.10 217.75 216.25 
2 110.71 109.38 109.05 108.70 107.28 
5 45.22 43.97 43.62 43.25 41.79 

10 23.31 22-14 21.81 21.45 19.85 

CONCLUSION 

An extension of a paper by Barber on thermal distortion 
effects of two contacting spherical bodies is made to two 
rough nominally flat perfectly thermally contacting elastic 
solids with negligible radiation effects. The change of the 
radius of the real contact area of a single contact spot and 
of the compliance of two spherical asperities depending on 
the force and the magnitude and direction of the heat flow for 
two contacting specimens of copper and stainless steel is 
represented in the Tables 2 and 3 (equation 3). The theory 
shows, that an exponential summit height probability 
distribution leads to a simple relation between the total 
force P, the heat flux Q and the constriction resistance ). 
(Table 4). 

In an appropriate manner, the more general case of the 
contact of rough spherical bodies can be solved. Distri- 
butions of summit heights other than exponential consider- 
ably increase the numerical work. 
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