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NOMENCLATURE

A, area of contact of a single contact spot;
a, radius of a single area of contact;
A, fraction of actual contact;
B,H, abbreviations;
G  a(l+v)/K;
Ey, Young’s modulus;
E’) Z (l_vf)/Ek;

k=1,2
F, force due to a single contact spot;
h;, compliance;
K;, thermal conductivity;
Ko, 2K K /(K +K3);
N, number of asperities per unit area 4,;
P, total contact force per unit area 4,;
P, pressure;
Q, total heat flux per unit area A4,;
Qi heat flux through a single contact area A;;
Ry, radii of curvature of the contacting asperities

when unheated;
R, Rl Rz/(R1 +Rz),
r, ¥,  variable radii;
T, temperatures;
AT, temperature difference;
u, separation of the mean planes;
2z, axial coordinates.

Greek symbols
s cocfficient of thermal expansion;
. BYf2JR*);
A, constriction resistance;
v, Poisson’s ratios ;
¢ integration variable;
a, RMS roughness of the surface;
o, thermal contact conductance;
R contact resistance factor.
Superscripts

*
’

denotes normalization with respect to o.

Subscripts
0, interface or mean value;
i single contact spot;
k, k=1, 2 solids 1,2.

INTRODUCTION

DuE 10 the inevitable roughness of all surfaces in nature
the heat flow through the interface between two apparently
conforming solids is less than that which would be obtained
in the presence of perfectly smooth bodies. The actual
contact is restricted to a few randomly distributed small
areas within the apparent contact area. The distortion of the
heat flow causes a change in thermal contact resistance or
constriction resistance, which depends on the direction of
heat flow.

In a paper [1] Barber gives a deterministic mathematical
treatment of the effect of thermal distortion on the thermai
contact resistance between two semi-infinite solids of
different materials. The present work presents an attempt to
clear up the influence of the thermal distortion due to heat
flow in the case of rough nominally flat surfaces in perfect
thermal contact throughout the final circular contact areas
A; of radius g; of the asperities in a vacuum under con-
ditions of negligible radiation. Both the asperities and the
substrate are assumed to behave elastically. For the sake of
simplicity and to have a first impression of the thermal-
effect an exponential probability distribution of asperity
heights is assumed.

ANALYSIS

The undistorted surfaces of the solids are spheres, whereas
the distorted surfaces are approximated by paraboloids

1
B=r {2Rk+—--(Tl T,)Ko(l—an)} k=12, (1)

where R, are the radii of curvature, T, the “temperatures at
infinity” of the solids, K, = 2K; K,/(K; + K;) with K, the
conductivities and C, thermoelastic constants [1] (see
Table 1).

Table 1. Thermoelastic constants of some materials (cgs, cal, °C—System, v, = 0-3)

Substance Density Spec. heat Diff. xcoeﬁ'. Llc%:ép' Cgr;gg:ct. C= (1—+Q

P ¢ o x 108 K C x 108
Copper 894 00914 114 162 093 2264
Silver 10-49 00556 171 197 1-00 2560
Aluminium 270 02060 086 238 0-48 64-50
Bronze 8-50 009 033 18:0 025 93-60
Steel 7-85 0118 012 111 01t 131-18
Glass (flint) 2:40 020 0-0058 50 0-0028 232142
Concrete 2:30 023 00042 0-0022
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Fi6. 1. Thermal contact geometry (——, nominal surfaces;
——, Hertzian deformed surfaces; ———, thermal distorted
nominalsurfaces; -, thermal distorted surfaces in contact).

The necessary pressure distribution p{r) to make the
surfaces (1) conform throughout the contact circle 4; is
calculated by extending Hertz's analysis to the anisothermal
case:

{z:+23)

H POV 4

alr=r] ¥
N O e M I e e v
alr=r 2 Jo a? +& )t +&)JE

Noting that
r2
p(r) = 3F;/(2naf) \/ (1 - —2)
a;

and considering (1), a comparison of the r.hs. in {2) leads
to the formulae

F; = 4E'a} J3R)+8(C, — C, )T, ~ ) Ko(1 — I 2) E'a?/(37) 3
by = af/R+2(C; — C )Ty — T)Ko(l —In ay/x,
where h; is the compliance, F; the total force,

R = R; R,/(R, +Ry), v the Poisson’s ratios, E, the Young’s
moduli,

VE = Y (1~WE,.

k=1,2

This can be interpreted as follows: equation (3) gives the
load F; and the compliance A, required to cause the solids 1,2
to conform over a circular area of radius g; when their
exiremities are maintained at temperatures T, 73, respec-
tively (Fig. 1).

The second equation in (3) permits the determination of
the contact radius for a given compliance:

@ = —B/2+./[(B/2*+kR] “
where

2
B =—R(C;~C)T ~T)Ko(1 - In2) &)

and the positive square root has to be chosen to ensure a
positive value of g;. Tables 2 and 3 show the relations
between F;, a; and h; for some specified values of B and
demonstrate the dependence of the change of the contact area
on the direction of heat flow. The cases B = 0 (isothermal
or similar materials) reduce to the Hertzian theory.

In the following, the above solution for a single contact
spot represents the basis of the conduct of rough bodies
with heat flow, specifically in the contact of a rough
nominally flat surface and a smooth plane.

The thermal contact conductance ¢ (A= ¢ ! is the
constriction resistance) is defined as [2]:
o= o 1O ®
"L-T, Thi-
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Table 2. Load F; (kP) vs & = a;/R at given temperature

differences (°C)
v & AT =T ~T,

"R -500 100 0 100 500
100 45995 46071 46091 461-10 461-87
075 19490 19434 19445 194-55 19498
0-50 5737 5756 5761 57-66 5785
0-40 29-34 29-47 29-50 29-53 29-65
0-30 12-36 1243 1245 12-46 12-53
0-25 714 719 720 721 726
020 365 3-68 3-687 3695 3725
015 1-534 1-551 1-555 1-560 1-577
010 0451 0459 0461 0-463 0471
0-05 0055 0057 00575 0-058 0-060

Table 3. Compliance h/R vs « = a/R at given temperature

differences (°C)
= a4 AT=T-T,

TR -500 —100 0 100 500
100 09979 0-9995 1-0000 1-0004 1-0020
075 0-5609 05621 0-5625 0-5628 0-5640
050 02489 0-2497 02500 02502 02510
025 00619 00623 0-0625 00626 00630
020 00395 00399 00400 00400 00404
015 00221 00224 00225 00225 00228
005 00023 00024 00025 0-0025 00026

where Q is the total heat flux per unit apparent area,
Q; the heat flux through a single contact spot. Let
0: = 2Koa{ T, — T)/¥, where ¥ = {1 —,/4)*? and A4 is the
fraction of actual area of contact, then

2
@“32.71:*‘}'&203. (7)

The further development strongly depends on the kind of
the summit height probability distribution. The special
choice of an exponential distribution permits an analytical
solution of the problem. This probability distribution is a
fairly good approximation to real surfaces at low loads since
it covers the higher asperities, and gives a first information
on the magnitude of the thermal distortion effect.

The fraction of actual area in contact 4 is given by [3]:

A = Nra?R*exp(—u*)[1 — /e dexp(dFerfe()] (8)

where & = B*/(2\/R¥), u* = ujo denotes the dimensionless
separation of the mean planes with respect to the RMS
roughness ¢ of the surface, N is the number of asperities in
the area 4,, B* = B/o and R* = R/o.

The sum of the contact radii is given by

Ya= Naj a*e *dé = Na\/;tRe'

and the load per unit area by [3]

“exp(d2)erfe(d)  (9)

NA4E's?
3R*

P=

j (a¥** + B*arY) e %d¢

N4E'¢?

3 e " exp(dM)H(BY) (10)

where a} = a,/0 and

H(B*) = \/ZR* [sexp(— 69+ /n (3-8 erfe(d)]. (1)
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Upon eliminating u* in the equations (9) and (10} one
gets

5 _3J(nR*)Perfc(6)
“=7RE o H(BY
and, considering the relation P/4, from (7) and (12} a
transcendental relation between constriction resistance 4,

total force P and total heat flux Q results by substituting
T, — T, = A.Q in the expression for B:

(12)

(=VIAP QI _ | . 3y ER")erfc(d)
P - 4E'c H(B%)

(13)

In the case of low loads, where the thermal interaction
of the randomly distributed single contact spots is very
weak—the adiabatic cylinder [2] becomes large—y tends
to unity; then from (13) one gets an approximate relation
between P, Q and 4 of the form

¢ 4FE H(B%

P=x 3 /(nR*) erfc(®)

a4

where B* now is a function of the product AK,Q given in
(5). Table 4 shows the relation between P, @ and A for heat
flow between stainless steel and copper specimens in contact.

Example. The thermal distortion effect due to heat flow
between the interface of a stainless steel specimen, referred
to as the smooth plane (index 1), and a copper specimen,
referred to as the rough plane (index 2), in contact is
analyzed.

Data:
Young’s modulus (S1)
Young’s modulus (Cu)
Poisson’s ratio vy = vy =03
Conductivity Ko = 0-1967 cal/(scm? °C)
C,—C; = —108-54 x 10~ ®scm3/cal
Asperity radius R =R, =002cm
Roughness o=5x10"%cm
Asperity density N = 5 x 10%/cm?
Temperatures differences Ty~ T, = {~500, — 100,0,

100, 500)°C

Ey = 208 x 10° kP/cm?
E; = 125 x 10¢ kP/cm?
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Table 4. Total load P (kP) vs constriction resistance A
(scm? °C/cal) at given total heat flux Q (cal/scm?)
(equation 14)

3 Q
—500 -100 0 100 500
1 21986 21948 21810 21775 21625
2 11071 10938 10905 10870 10728
5 4522 4397 4362 4325 41-79
10 2331 2214 2181 2145 19-85
CONCLUSION

An extension of a paper by Barber on thermal distortion
effects of two contacting spherical bodies is made to two
rough nominally flat perfectly thermally contacting elastic
solids with negligible radiation effects. The change of the
radius of the real contact area of a single contact spot and
of the compliance of two spherical asperities depending on
the force and the magnitude and direction of the heat flow for
two contacting specimens of copper and stainless steel is
represented in the Tables 2 and 3 (equation 3). The theory
shows, that an exponential summit height probability
distribution leads to a simple relation between the total
force P, the heat flux Q and the constriction resistance A
{Table 4).

In an appropriate manner, the more general case of the
contact of rough spherical bodies can be solved. Distri-
butions of summit heights other than exponential consider-
ably increase the numerical work.
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